Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
P. G. Aravindan, ${ }^{\text {a }}$ M. Yogavel, ${ }^{\text {a }}{ }^{\text {b }}$
M. Thirumavalavan, ${ }^{\text {b }}$ P. Akilan, ${ }^{\text {b }}$
D. Velmurugan, ${ }^{\text {a* }}$ M.

Kandaswamy, ${ }^{\text {b }}$ S. Shanmuga
Sundara Raj ${ }^{\text {c }}$ and H.-K. Fun ${ }^{\text {d }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Inorganic
Chemistry, University of Madras, Guindy
Campus, Chennai 600 025, India, ${ }^{\text {h B3 }} 3121$
Medical Centre North, Department of Medicine-
Nephrology, Nashville, USA, and ${ }^{\mathrm{d}} \mathrm{X}$-ray
Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.086$
$w R$ factor $=0.240$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

3,4:9,10-Dibenzo-1,12-diformyl-5,8dioxododecane

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4}$, the dihedral angle between the two aromatic rings is $75.8(1)^{\circ}$. The torsion angle about the central $\mathrm{C}-\mathrm{C}$ bond is $77.2(3)^{\circ}$. The packing of the molecules in the solid state is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ intermolecular interactions.

Comment

Polyether compounds are of much interest recently due to their remarkable metal ion selectivity, ability to transport alkali metal ions through biological and artificial membranes and their utilization in organic synthetic procedures (Armstrong \& Lindoy, 1975; Grimsley et al., 1977).

(I)

The bond lengths and angles of the title compound, (I), agree with the values reported for 2,2'-[1,2-ethanediylbis(oxy)](benzenemethanol) (Bailey et al., 1989). The dihedral angle between the aromatic rings $A(\mathrm{C} 2-\mathrm{C} 7)$ and $B(\mathrm{C} 10-\mathrm{C} 15)$ is $75.9(1)^{\circ}$. Atoms $\mathrm{O} 1 / \mathrm{C} 1 / \mathrm{O} 2 / \mathrm{C} 8$ and atoms $\mathrm{O} 4 / \mathrm{C} 16 / \mathrm{O} 3 / \mathrm{C} 9$ are almost coplanar with rings A and B, respectively [the deviations of these atoms are 0.020 (3), 0.058 (4), -0.010 (2) and -0.040 (4) \AA, and -0.101 (4), -0.030 (5), 0.050 (3) and 0.012 (4) Å, respectively]. The ethylene group between the aromatic rings has the gauche form and the torsion angle about the $\mathrm{C} 8-\mathrm{C} 9$ bond is $77.2(4)^{\circ}$, indicating that the molecule is twisted.

The molecules are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and form an infinite chain running along the a direction (Fig. 2). The face-to-face interactions are between A and $A^{\text {iv }}$, and B and B^{v}, which stack in the lattice along the b and a axes, respectively, with centroid-centroid distances of 3.784 (2) and 3.731 (2) \AA, respectively [symmetry codes: (iv) $1-x, 1-y$, $-z$; (v) $-x, 2-y, 1-z]$. Apart from these weak $\pi-\pi$ interactions, the packing of the molecules in the solid state is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interactions (Table 2).

Experimental

1,2-Dibromoethane ($9.396 \mathrm{~g}, 0.05 \mathrm{~mol}$) in methanol (10 ml) was added to salicylaldehyde ($9.052 \mathrm{~g}, 0.1 \mathrm{~mol}$) in methanol (30 ml) and the solution was heated. Sodium hydroxide pellets $(4 \mathrm{~g}, 0.1 \mathrm{~mol})$ in water (15 ml) were added and the reaction mixture was refluxed under an N_{2} atmosphere for nearly 48 h . The resulting solution was then allowed to cool at room temperature (298 K). The resulting solid

Received 8 April 2003
Accepted 6 May 2003
Online 16 May 2003

Figure 1
The molecular structure, with the atom-numbering scheme. Ellipsoids are drawn at the 35% probability level.
was then filtered off and washed with water and methanol. Crystals were obtained by recrystallization from chloroform.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{4} \\
& M_{r}=270.27 \\
& \text { Triclinic, } P \overline{1} \\
& a=7.7956(7) \AA \\
& b=8.4511(8) \AA \\
& c=11.4697(11) \AA \\
& \alpha=83.054(2) \\
& \beta=75.008()^{\circ} \\
& \gamma=67.219(2)^{\circ} \\
& V=672.80(11) \AA^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.334 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1815 \\
& \quad \text { reflections } \\
& \theta=1.8-28.3^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, yellow } \\
& 0.36 \times 0.24 \times 0.16 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens SMART CCD areadetector
ω scans
Absorption correction: none
4829 measured reflections
1273 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-10 \rightarrow 9$
$k=-10 \rightarrow 11$
$l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.086$
$w R\left(F^{2}\right)=0.240$
$S=0.83$
3172 reflections
182 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1202 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.37 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.38 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.036(10)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O1-C1	$1.204(4)$	$\mathrm{O} 4-\mathrm{C} 16$	$1.205(4)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.365(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.464(5)$
$\mathrm{O} 2-\mathrm{C} 8$	$1.423(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.493(4)$
$\mathrm{O} 3-\mathrm{C} 10$	$1.365(4)$	$\mathrm{C} 11-\mathrm{C} 16$	$1.459(5)$
$\mathrm{O} 3-\mathrm{C} 9$	$1.432(3)$		
			$108.0(3)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8$	$119.2(2)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$108.1(3)$
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 9$	$117.3(2)$	$\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 8$	$124.7(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$125.5(4)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 15$	$115.4(3)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 6$	$123.9(3)$	$\mathrm{O} 3-\mathrm{C} 10-\mathrm{C} 11$	$124.7(4)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 2$	$115.9(3)$	$\mathrm{O} 4-\mathrm{C} 16-\mathrm{C} 11$	
			$77.2(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$3.4(5)$	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 3$	$-3.0(6)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	$173.3(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 16-\mathrm{O} 4$	
$\mathrm{C} 10-\mathrm{O} 3-\mathrm{C} 9-\mathrm{C} 8$	$178.4(2)$		

Figure 2

A packing diagram of the molecule, viewed down the a axis. $\pi-\pi$ and C$\mathrm{H} \cdots \mathrm{O}$ interactions are indicated by dashed lines.

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.
$C g A$ and $C g B$ are the centroids of rings A and B, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C1-H1 \cdots O2	0.93	2.40	$2.746(4)$	102
C16-H16 $\cdots \mathrm{O} 3$	0.93	2.41	$2.748(4)$	102
C6-H6 $\cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.48	$3.290(4)$	146
C9-H9A $\mathrm{Cg}^{\text {ii }}$	0.97	2.84	$3.712(2)$	150
C9-H9B $\cdots \mathrm{Cg}^{\text {iii }}$	0.97	2.76	$3.473(2)$	131

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, 2-y, 1-z$; (iii) $1-x, 2-y,-z$.
All the H atoms were geometrically positioned and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ 0.97 A.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai, 1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Financial support from the Department of Science and Technology (DST) and the University Grants Commission (UGC), Government of India, are gratefully acknowledged.

References

Armstrong, L. G. \& Lindoy, L. F. (1975). Inorg. Chem. 14, 1322-1326.
Bailey, N. A., Fenton, D. E., Williams, M. G. \& Winter, D. J. (1989). Acta Cryst. C45, 1778-1780.
Grimsley, P. G., Lindoy, L. F., Lip, H. C., Smith, R. J. \& Baker, J. T. (1977). Aust. J. Chem. 30, 2095-2098.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zsolnai, L. (1997). ZORTEP. University of Heidelberg, Germany.

